题目内容

已知△ABC的三个内角A,B,C所对的边分别为a,b,c,
m
=(1,1-
3
sinB),
n
=(cosB,1)且
m
n

(1)求角B;
(2)若a+c=
3
b,判断△ABC的形状.
(1)∵
m
n

m
n
=0即有cosB+1-
3
sinB=0

3
sinB-cosB=1

sin(B-
π
6
)=
1
2

B∈(0,π)∴-
π
6
<B-
π
6
<-
6

B-
π
6
=
π
6
,∴B=
π
3

(2)∵a+c=
3
b
,∴sinA+sinC=
3
sinB=
3
2

A+C=
2
3
π
,∴C=
2
3
π-A

sinA+sin(
2
3
π-A)=
3
2
3
2
cosA+
3
2
sinA=
3
2

sin(A+
π
6
)=
3
2
A∈(0,
2
3
π)

A+
π
6
∈(
π
6
6
)
A+
π
6
π
3
3
A=
π
3
π
2


A=
π
6
,B=
π
2
时,此时C=
π
2
,△ABC为直角三角形;
A=
π
2
时,△ABC为直角三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网