题目内容
已知△ABC的三个内角A,B,C所对的边分别为a,b,c,
=(1,1-
sinB),
=(cosB,1)且
⊥
,
(1)求角B;
(2)若a+c=
b,判断△ABC的形状.
| m |
| 3 |
| n |
| m |
| n |
(1)求角B;
(2)若a+c=
| 3 |
(1)∵
⊥
,
∴
•
=0即有cosB+1-
sinB=0
得
sinB-cosB=1
∴sin(B-
)=
B∈(0,π)∴-
<B-
<-
∴B-
=
,∴B=
(2)∵a+c=
b,∴sinA+sinC=
sinB=
∵A+C=
π,∴C=
π-A
sinA+sin(
π-A)=
得
cosA+
sinA=
sin(A+
)=
A∈(0,
π)
∴A+
∈(
,
)∴A+
∈
或
∴A=
或
当A=
,B=
时,此时C=
,△ABC为直角三角形;
当A=
时,△ABC为直角三角形.
| m |
| n |
∴
| m |
| n |
| 3 |
得
| 3 |
∴sin(B-
| π |
| 6 |
| 1 |
| 2 |
B∈(0,π)∴-
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
∴B-
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
(2)∵a+c=
| 3 |
| 3 |
| 3 |
| 2 |
∵A+C=
| 2 |
| 3 |
| 2 |
| 3 |
sinA+sin(
| 2 |
| 3 |
| 3 |
| 2 |
| ||
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
sin(A+
| π |
| 6 |
| ||
| 2 |
| 2 |
| 3 |
∴A+
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
| π |
| 2 |
当A=
| π |
| 6 |
| π |
| 2 |
| π |
| 2 |
当A=
| π |
| 2 |
练习册系列答案
相关题目