题目内容

设Sn是数列{an}的前n项和,Sn≠0,a1=1,an+1+2SnSn+1=0
(Ⅰ)求证数列{
1
Sn
}是等差数列,并求{an}的通项;
(Ⅱ)记bn=
Sn
2n+1
,求数列{bn}的前n项和Tn
分析:(Ⅰ)由an+1+2SnSn+1=0,得Sn+1-Sn+2SnSn+1=0,两边同除以SnSn+1并整理得,
1
Sn+1
-
1
Sn
=2
,从而可判断数列{
1
Sn
}是等差数列,可求得Sn,根据Sn与an的关系可求得an
(Ⅱ)由(Ⅰ)可求得bn,拆项后利用裂项相消法即可求得结果;
解答:解:(Ⅰ)∵an+1+2SnSn+1=0,
∴Sn+1-Sn+2SnSn+1=0,
两边同除以SnSn+1,并整理得,
1
Sn+1
-
1
Sn
=2

∴数列{
1
Sn
}是等差数列,其公差为2,首项为
1
S1
=1,
1
Sn
=1+2(n-1)=2n-1

Sn=
1
2n-1

∴an=Sn-Sn-1=
1
2n-1
-
1
2n-3
=-
2
(2n-1)(2n-3)

又a1=1,
an=
1,n=1
-
2
(2n-1)(2n-3)
,(n≥2,n∈N)

(Ⅱ)由(Ⅰ)知,bn=
Sn
2n+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n-1
-
1
2n+1
)
=
1
2
(1-
1
2n+1
)
=
n
2n+1
点评:本题考查由数列递推式求数列的通项、数列求和,裂项相消法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网