题目内容
设Sn是数列{an}的前n项和,Sn≠0,a1=1,an+1+2SnSn+1=0
(Ⅰ)求证数列{
}是等差数列,并求{an}的通项;
(Ⅱ)记bn=
,求数列{bn}的前n项和Tn.
(Ⅰ)求证数列{
| 1 |
| Sn |
(Ⅱ)记bn=
| Sn |
| 2n+1 |
分析:(Ⅰ)由an+1+2SnSn+1=0,得Sn+1-Sn+2SnSn+1=0,两边同除以SnSn+1并整理得,
-
=2,从而可判断数列{
}是等差数列,可求得Sn,根据Sn与an的关系可求得an;
(Ⅱ)由(Ⅰ)可求得bn,拆项后利用裂项相消法即可求得结果;
| 1 |
| Sn+1 |
| 1 |
| Sn |
| 1 |
| Sn |
(Ⅱ)由(Ⅰ)可求得bn,拆项后利用裂项相消法即可求得结果;
解答:解:(Ⅰ)∵an+1+2SnSn+1=0,
∴Sn+1-Sn+2SnSn+1=0,
两边同除以SnSn+1,并整理得,
-
=2,
∴数列{
}是等差数列,其公差为2,首项为
=1,
∴
=1+2(n-1)=2n-1,
∴Sn=
,
∴an=Sn-Sn-1=
-
=-
,
又a1=1,
∴an=
;
(Ⅱ)由(Ⅰ)知,bn=
=
=
(
-
),
∴Tn=
[(1-
)+(
-
)+(
-
)+…+(
-
)=
(1-
)=
.
∴Sn+1-Sn+2SnSn+1=0,
两边同除以SnSn+1,并整理得,
| 1 |
| Sn+1 |
| 1 |
| Sn |
∴数列{
| 1 |
| Sn |
| 1 |
| S1 |
∴
| 1 |
| Sn |
∴Sn=
| 1 |
| 2n-1 |
∴an=Sn-Sn-1=
| 1 |
| 2n-1 |
| 1 |
| 2n-3 |
| 2 |
| (2n-1)(2n-3) |
又a1=1,
∴an=
|
(Ⅱ)由(Ⅰ)知,bn=
| Sn |
| 2n+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
点评:本题考查由数列递推式求数列的通项、数列求和,裂项相消法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目