题目内容
设Sn是数列{an}的前n项和,且点(n,Sn)在函数y=x2+2x上,
(1)求数列{an}的通项公式;
(2)已知bn=2n-1,Tn=
+
+…+
,求Tn.
(1)求数列{an}的通项公式;
(2)已知bn=2n-1,Tn=
| 1 |
| a1.b1 |
| 1 |
| a2.b2 |
| 1 |
| an.bn |
分析:(1)由题意可得,Sn=n2+2n,由a1=S1,n≥2时,an=Sn-Sn-1可求通项
(2)由
=
=
(
-
),考虑利用裂项求和即可求解
(2)由
| 1 |
| anbn |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:解:(1)由题意可得,Sn=n2+2n
当n=1时,a1=S1=3
当n≥2时,an=Sn-Sn-1=n2+2n-(n-1)2-2(n-1)=2n+1
而a1=3适合上式
∴an=2n+1
(2)∵bn=2n-1
∴
=
=
(
-
)
∴Tn=
+
+…+
=
(1-
+
-
+…+
-
)
=
(1-
)=
当n=1时,a1=S1=3
当n≥2时,an=Sn-Sn-1=n2+2n-(n-1)2-2(n-1)=2n+1
而a1=3适合上式
∴an=2n+1
(2)∵bn=2n-1
∴
| 1 |
| anbn |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| a1.b1 |
| 1 |
| a2.b2 |
| 1 |
| an.bn |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
点评:本题主要考查了利用数列的递推公式,a1=S1,当n≥2时,an=Sn-Sn-1求解数列的通项公式,及数列的裂项求和方法的应用.
练习册系列答案
相关题目