题目内容
设Sn是等差数列{an}的前n项和,且
=
,则
= .
| S3 |
| S6 |
| 1 |
| 3 |
| S9 |
| S12 |
考点:等差数列的性质
专题:计算题,等差数列与等比数列
分析:利用等差数列{an}的前n项和为Sn,则S3,S6-S3,S9-S6,S12-S9,成等差数列,即可得出结论.
解答:
解:设S3=1,则S6=3,
∵等差数列{an}的前n项和为Sn,则S3,S6-S3,S9-S6,S12-S9,成等差数列,
∴S9=6,S12=10,
∴
=
.
故答案为:
.
∵等差数列{an}的前n项和为Sn,则S3,S6-S3,S9-S6,S12-S9,成等差数列,
∴S9=6,S12=10,
∴
| S9 |
| S12 |
| 3 |
| 5 |
故答案为:
| 3 |
| 5 |
点评:正确运用等差数列{an}的前n项和为Sn,则S3,S6-S3,S9-S6,S12-S9,成等差数列是关键.
练习册系列答案
相关题目
| A、0.6 | B、0.4 |
| C、0.2 | D、0.1 |