ÌâÄ¿ÄÚÈÝ
£¨2007•·îÏÍÇøÒ»Ä££©ÒÑÖª£ºº¯Êýf(x)=
(a£¬b¡ÊR£¬ab¡Ù0)£¬f(2)=
£¬f(x)=xÓÐΨһµÄ¸ù£®
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©ÊýÁÐ{an}¶Ôn¡Ý2£¬n¡ÊN×ÜÓÐan=f£¨an-1£©£¬a1=1£»ÇóÖ¤{
}ΪµÈ²îÊýÁУ¬²¢Çó³ö{an}µÄͨÏʽ£®
£¨3£©ÊÇ·ñ´æÔÚÕâÑùµÄÊýÁÐ{bn}Âú×㣺{bn}Ϊ{an}µÄ×ÓÊýÁУ¨¼´{bn}ÖеÄÿһÏî¶¼ÊÇ{an}µÄÏÇÒ{bn}ΪÎÞÇîµÈ±ÈÊýÁУ¬ËüµÄ¸÷ÏîºÍΪ
£®Èô´æÔÚ£¬ÕÒ³öÒ»¸ö·ûºÏÌõ¼þµÄÊýÁÐ{bn}£¬Ð´³öËüµÄͨÏʽ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
| x |
| ax+b |
| 2 |
| 3 |
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©ÊýÁÐ{an}¶Ôn¡Ý2£¬n¡ÊN×ÜÓÐan=f£¨an-1£©£¬a1=1£»ÇóÖ¤{
| 1 |
| an |
£¨3£©ÊÇ·ñ´æÔÚÕâÑùµÄÊýÁÐ{bn}Âú×㣺{bn}Ϊ{an}µÄ×ÓÊýÁУ¨¼´{bn}ÖеÄÿһÏî¶¼ÊÇ{an}µÄÏÇÒ{bn}ΪÎÞÇîµÈ±ÈÊýÁУ¬ËüµÄ¸÷ÏîºÍΪ
| 1 |
| 2 |
·ÖÎö£º£¨1£©¸ù¾Ýf£¨2£©µÄÖµ½¨Á¢¹ØÓÚaºÍbµÄµÈÁ¿¹ØÏµ£¬
½â·¨Ò»£º¸ù¾Ýf£¨x£©=x ÓÐΨһ¸ù£¬¿ÉµÃax2+£¨b-1£©x=0ÓÐΨһ¸ù£¬ÀûÓÃÅбðʽ½øÐÐÇó½â£¬Çó³öaºÍbµÄÖµ£»
½â·¨¶þ£º¸ù¾Ýf£¨x£©=x ÓÐΨһ¸ù£¬¿ÉµÃx£¨
-1£©=0£¬½âµÃÒ»¸ùΪ0£¬´Ó¶ø
-1=0µÄ¸ùÒ²ÊÇx=0£¬¿ÉÇó³öaºÍbµÄÖµ£»
£¨2£©½«an=
È¡µ¹Êý£¬»¯¼ò¿ÉµÃ{
}ΪµÈ²îÊýÁУ¬´Ó¶øÇó³ö{an}µÄͨÏʽ£®
£¨3£©Éè{bn} µÄÊ×ÏîΪ
£¬¹«±ÈΪq£¬È»ºóÇó³öÕâ¸öÎÞÇîµÈ±ÈÊýÁеĸ÷ÏîºÍ¿ÉµÃµ½mºÍqµÄµÈÁ¿¹ØÏµ£¬È»ºóÈÎÒâÇó³öÒ»×é·ûºÏÌâÒâÊýÁм´¿É£®
½â·¨Ò»£º¸ù¾Ýf£¨x£©=x ÓÐΨһ¸ù£¬¿ÉµÃax2+£¨b-1£©x=0ÓÐΨһ¸ù£¬ÀûÓÃÅбðʽ½øÐÐÇó½â£¬Çó³öaºÍbµÄÖµ£»
½â·¨¶þ£º¸ù¾Ýf£¨x£©=x ÓÐΨһ¸ù£¬¿ÉµÃx£¨
| 1 |
| ax+b |
| 1 |
| ax+b |
£¨2£©½«an=
| an-1 |
| an-1+1 |
| 1 |
| an |
£¨3£©Éè{bn} µÄÊ×ÏîΪ
| 1 |
| m |
½â´ð£º½â£º£¨1£©f(2)=
⇒
=
£¨1·Ö£©
½â·¨Ò»£ºf£¨x£©=x ÓÐΨһ¸ù£¬ËùÒÔ
=x¼´ax2+£¨b-1£©x=0ÓÐΨһ¸ù£¬£¨1·Ö£©
¡à¡÷=£¨b-1£©2=0£¬£¨1·Ö£©
b=1 a=1 £¨1·Ö£©
ÓÐ b=1 a=1 µÃ£º·½³ÌµÄ¸ùΪ£ºx=0£¨1·Ö£©
¾¼ìÑéx=0ÊÇÔ·½³ÌµÄ¸ù£¨1·Ö£©
½â·¨¶þ£º
=x
x£¨
-1£©=0£¨1·Ö£©
¡¡ x1=0£¬ÒòΪ·½³ÌÓÐΨһµÄ¸ù£¨1·Ö£©
¼´£º
-1=0µÄ¸ùÒ²ÊÇx=0£¬£¨1·Ö£©
µÃb=1 a=1 £¨1·Ö£©
¾¼ìÑéx=0ÊÇÔ·½³ÌµÄ¸ù£¨1·Ö£©
£¨2£©an=
⇒
-
=1 £¨2·Ö£©
¡à{
}ΪµÈ²îÊýÁУ¨1·Ö£©
¡à
=
+(n-1)¡Á1=n £¨2·Ö£©
ËùÒÔ an=
£¨1·Ö£©
£¨3£©Éè{bn} µÄÊ×ÏîΪ
£¬¹«±ÈΪq £¨m¡ÊN*£¬
¡ÊN* £©
ËùÒÔÕâ¸öÎÞÇîµÈ±ÈÊýÁеĸ÷ÏîºÍΪ£º
=
£¬
=1-q£»
µ±m=3 ʱ£¬q=
£¬bn=(
)n£»
µ±m=4ʱ£¬q=
£¬bn=(
)n+1 £¨6·Ö£©
| 2 |
| 3 |
| 2 |
| 2a+b |
| 2 |
| 3 |
½â·¨Ò»£ºf£¨x£©=x ÓÐΨһ¸ù£¬ËùÒÔ
| x |
| ax+b |
¡à¡÷=£¨b-1£©2=0£¬£¨1·Ö£©
b=1 a=1 £¨1·Ö£©
ÓÐ b=1 a=1 µÃ£º·½³ÌµÄ¸ùΪ£ºx=0£¨1·Ö£©
¾¼ìÑéx=0ÊÇÔ·½³ÌµÄ¸ù£¨1·Ö£©
½â·¨¶þ£º
| x |
| ax+b |
x£¨
| 1 |
| ax+b |
¡¡ x1=0£¬ÒòΪ·½³ÌÓÐΨһµÄ¸ù£¨1·Ö£©
¼´£º
| 1 |
| ax+b |
µÃb=1 a=1 £¨1·Ö£©
¾¼ìÑéx=0ÊÇÔ·½³ÌµÄ¸ù£¨1·Ö£©
£¨2£©an=
| an-1 |
| an-1+1 |
| 1 |
| an |
| 1 |
| an-1 |
¡à{
| 1 |
| an |
¡à
| 1 |
| an |
| 1 |
| a1 |
ËùÒÔ an=
| 1 |
| n |
£¨3£©Éè{bn} µÄÊ×ÏîΪ
| 1 |
| m |
| 1 |
| q |
ËùÒÔÕâ¸öÎÞÇîµÈ±ÈÊýÁеĸ÷ÏîºÍΪ£º
| ||
| 1-q |
| 1 |
| 2 |
| 2 |
| m |
µ±m=3 ʱ£¬q=
| 1 |
| 3 |
| 1 |
| 3 |
µ±m=4ʱ£¬q=
| 1 |
| 2 |
| 1 |
| 2 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˵ȲîÊýÁеÄÅж¨ºÍÊýÁеÄÇóºÍ£¬Í¬Ê±¿¼²éÁË·½³ÌµÄ¸ùµÄÓйØÎÊÌ⣬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿