题目内容
已知数列{an},{bn}满足:a1=
,an+bn=1,bn+1=
(1)求证数列{
}是等差数列并求数列{bn}的通项公式;
(2)设Sn=a1a2+a2a3+…anan+1,求Sn.
| 1 |
| 4 |
| bn |
| 1-an2 |
(1)求证数列{
| 1 |
| bn-1 |
(2)设Sn=a1a2+a2a3+…anan+1,求Sn.
考点:数列递推式,等差关系的确定,数列的求和
专题:等差数列与等比数列
分析:(1)由已知得bn+1=
=
=
,从而
-
=(-
)-(-
)=-1,由此能证明数列{
}是等差数列,从而能求出bn=
.
(2)由已知得an=
,从而anan+1=
=
-
,由此利用裂项求和法能求出Sn.
| bn |
| 1-an2 |
| 1-an |
| (1-an)(1+a1) |
| 1 |
| 1+an |
| 1 |
| bn+1-1 |
| 1 |
| bn-1 |
| an+1 |
| an |
| 1 |
| an |
| 1 |
| bn-1 |
| n+2 |
| n+3 |
(2)由已知得an=
| 1 |
| n+3 |
| 1 |
| (n+3)(n+4) |
| 1 |
| n+3 |
| 1 |
| n+4 |
解答:
(1)证明:∵a1=
,an+bn=1,
∴bn=1-an,∴bn+1=
=
=
,
∴
-
=(-
)-(-
)=-1,
数列{
}是等差数列,
∵a1+b1=
+b1=1,∴b1=
,∴
=-4,
∴
=-4+(n-1)×(-1)=-n-3,
解得bn=
.
(2)解:∵an+bn=1,bn=
,∴an=
,
∴anan+1=
=
-
,
∴Sn=a1a2+a2a3+…anan+1
=
-
+
-
+…+
-
=
-
=
.
| 1 |
| 4 |
∴bn=1-an,∴bn+1=
| bn |
| 1-an2 |
| 1-an |
| (1-an)(1+a1) |
| 1 |
| 1+an |
∴
| 1 |
| bn+1-1 |
| 1 |
| bn-1 |
| an+1 |
| an |
| 1 |
| an |
数列{
| 1 |
| bn-1 |
∵a1+b1=
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| b1-1 |
∴
| 1 |
| bn-1 |
解得bn=
| n+2 |
| n+3 |
(2)解:∵an+bn=1,bn=
| n+2 |
| n+3 |
| 1 |
| n+3 |
∴anan+1=
| 1 |
| (n+3)(n+4) |
| 1 |
| n+3 |
| 1 |
| n+4 |
∴Sn=a1a2+a2a3+…anan+1
=
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| n+3 |
| 1 |
| n+4 |
=
| 1 |
| 4 |
| 1 |
| n+4 |
=
| n |
| 4n+16 |
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
(理科)数列{an}满足,a1=1,an+1
=1,记Sn=a12+a22+…+an2,若S2n+1-Sn≤
对任意的n∈N*恒成立,则正整数m的最小值为( )
|
| m |
| 30 |
| A、10 | B、7 | C、8 | D、9 |
若函数f(x)满足对于任意x∈[n,m](n<m)有
≤f(x)≤km恒成立,则称函数f(x)在区间[n,m]上是“被k限制”的,若函数f(x)=x2-ax+a2在区间[
,a](a>0)上是“被2限制”的,则a的取值范围是( )
| n |
| k |
| 1 |
| a |
A、(1,
| |||||||
B、(1,
| |||||||
| C、(1,2] | |||||||
D、[
|