题目内容
【题目】假设在5秒内的任何时刻,两条不相关的短信机会均等地进入同一部手机,若这两条短信进入手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为_________________
【答案】![]()
【解析】
根据几何概型的概率公式求出对应的测度,即可得到结论.
分别设两个互相独立的短信收到的时间为x,y.则所有事件集可表示为0≤x≤5,0≤y≤5.
由题目得,如果手机受则到干扰的事件发生,必有|x-y|≤2.
三个不等式联立,则该事件即为x-y=2和y-x=2在0≤x≤5,0≤y≤5的正方形中围起来的图形
即图中阴影区域而所有事件的集合即为正方型面积52=25,
阴影部分的面积
,
所以阴影区域面积和正方形面积比值即为手机受到干扰的概率为
.
练习册系列答案
相关题目
【题目】设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;
1 | 1 | ﹣0.8 |
0.1 | ﹣0.3 | ﹣1 |
(2)设数表A∈S(2,3)形如
1 | 1 | c |
a | b | ﹣1 |
求K(A)的最大值;
(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.