题目内容
【题目】已知![]()
(1)求
的最小值以及取得最小值时
的值.
(2)若方程
在
上有两个根,求
的取值范围.
【答案】(1)
;(2)![]()
【解析】
(1)将函数变形后,利用基本不等式求解最小值及取等号时x的值.
(2)利用(1)所得结论,结合函数在区间
单调性和取值范围,可得k的取值范围为(
,3].
(1)
,已知
,则x-1>0,
,
故
,
当且仅当
时等号成立,解得x=
,
即
的最小值是
,取得最小值时
=
.
(2)由(1)知,f(x)在
上最小值为
,取最小值时x=
,
根据函数单调性定义,设1<x1<x2<
,
f(x1)-f(x2)=
,
由0<x1-1<x2-1<
知, 0<
<2,则
,则f(x1)-f(x2)>0,
即f(x)在
上单调减函数,同理可得f(x)在
上单调增函数,
易得f(3)=3,且f(x)=3,可解得x=2或x=3,且x=2
,
结合函数的单调性,故方程
在
上有两个根,则k的取值范围为(
,3].
练习册系列答案
相关题目