题目内容
20.在△ABC中,角A、B、C所对的边分别为a,b,c,$\frac{π}{3}$<C<$\frac{π}{2}$,$\frac{b}{a-b}$=$\frac{sin2C}{sinA-sin2C}$,a=3,sinB=$\frac{\sqrt{11}}{6}$,则b=$\sqrt{3}$.分析 由正弦定理和三角形的知识化简已知条件可得A=C,a=c,由sinB=$\frac{\sqrt{11}}{6}$可得cosB=$\frac{5}{6}$,由余弦定理可得b值.
解答 解:在△ABC中,∵$\frac{b}{a-b}$=$\frac{sin2C}{sinA-sin2C}$,∴$\frac{sinB}{sinA-sinB}$=$\frac{sin2C}{sinA-sin2C}$,
∴sinAsinB-sinBsin2C=sinAsin2C-sinBsin2C,
∴sinAsinB=sinAsin2C,即sinB=sin2C,
∴sin(A+C)=sin2C,
∵$\frac{π}{3}$<C<$\frac{π}{2}$,∴A+C>$\frac{π}{3}$,$\frac{2π}{3}$<2C<π,
∴A+C=2C,即A=C,a=c,
由sinB=$\frac{\sqrt{11}}{6}$可得cosB=$\frac{5}{6}$,
∴b2=2a2-2a2cosB=3,故b=$\sqrt{3}$.
点评 本题考查正余弦定理解三角形,涉及三角函数公式和三角形的知识,属中档题.
练习册系列答案
相关题目
10.集合A={x||x|≥2},B={x|x2-2x-3>0},则(∁RA)∩B=( )
| A. | (-2,-1) | B. | [2,3) | C. | (3,+∞) | D. | (-∞,-2]∪(3,+∞) |
15.某校高三文科500名学生参加了1月份的模拟考试,学校为了了解高三文科学生的数学、语文情况,利用随机表法从中抽取100名学生进行统计分析,抽出的100名学生的数学、语文成绩如表:
(1)将学生编号为000,001,002,…499,500,若从第五行第五列的数开始右读,请你依次写出最先抽出的5个人的编号(下面是摘自随机数表的第4~第7行);
12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 76
55 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
(2)若数学成绩优秀率为35%,求m,n的值;
(3)在语文成绩为良的学生中,已知m≥13,n≥11,求数学成绩“优”比良的人数少的概率.
| 语文 | ||||
| 优 | 良 | 及格 | ||
| 数学 | 优 | 8 | m | 9 |
| 良 | 9 | n | 11 | |
| 及格 | 8 | 9 | 11 | |
12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 76
55 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
(2)若数学成绩优秀率为35%,求m,n的值;
(3)在语文成绩为良的学生中,已知m≥13,n≥11,求数学成绩“优”比良的人数少的概率.
5.执行如图所示的程序框图,若输出s的值为11,那么输入的n值等于( )

| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
10.设A={1,2,(m2-3m+1)+(m2-5m-6)i},B={-1,5},A∩B={5},则实数m的值为( )
| A. | -1 | B. | -4 | C. | -1或4 | D. | 1或-4 |