题目内容

已知各项均不为零的数列{an},定义向量
cn
=(anan+1)
bn
=(n,n+1)
,n∈N*.下列命题中真命题是(  )
A.若?n∈N*总有
cn
bn
成立,则数列{an}是等差数列
B.若?n∈N*总有
cn
bn
成立,则数列{an}是等比数列
C.若?n∈N*总有
cn
bn
成立,则数列{an}是等差数列
D.若?n∈N*总有
cn
bn
成立,则数列{an}是等比数列
Cn
bn
可得,nan+1=(n+1)an,即
an+1
n+1
=
an
n

an+1
an
=
n+1
n

于是an=na1
故选A
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网