题目内容
(2013•绵阳二模)已知各项均不为零的数列{an}的首项a1=
,2an+1an=kan-an+1n∈N+,k是不等于1的正常数).
(I )试问数列{
-
}是否成等比数列,请说明理由;
(II)当k=3时,比较an与
的大小,请写出推理过程.
| 3 |
| 4 |
(I )试问数列{
| 1 |
| an |
| 2 |
| k-1 |
(II)当k=3时,比较an与
| 3n+4 |
| 3n+5 |
分析:(I )通过已知条件2an+1an=kan-an+1,推出
,然后推出
-
与
-
的关系,即可判断数列{
-
}成等比数列;
(II)当k=3时,求出an,然后求出an-
的差值,构造函数利用函数的单调性说明两者的大小关系.
| 1 |
| an+1 |
| 1 |
| an+1 |
| 2 |
| k-1 |
| 1 |
| an |
| 2 |
| k-1 |
| 1 |
| an |
| 2 |
| k-1 |
(II)当k=3时,求出an,然后求出an-
| 3n+4 |
| 3n+5 |
解答:解:(Ⅰ)由 2an+1an=kan-an+1,可得
=
(2+
),
∴
-
=
(2+
)-
=
(
-
),首项为
-
=
-
.
若
-
=0,即k=
时,数列{
-
}为零数列,不成等比数列.
若
-
≠0,即k>0,k≠1且k≠
时,
数列{
-
}是以
-
为首项,
为公比的等比数列.
∴综上所述,当k=
时,数列{
-
}不成等比数列;当k>0,k≠1且k≠
时,数列{
-
}是等比数列.…(6分)
(Ⅱ)当k=3时,数列{
-1}是以
为首项,
为公比的等比数列.
∴
-1=(
)n,即an=
=1-
,
∴an-
=1-
-(1-
)=
-
=
,
令F(x)=3x-3x-4(x≥1),则F′(x)=3xln3-3≥F′(1)>0,
∴F(x)在[1,+∞)上是增函数.
而F(1)=-4<0,F(2)=-1<0,F(3)=14>0,
∴①当n=1和n=2时,an<
;
②当n≥3时,3n+1>3n+5,即
>
,此时an>
.
∴综上所述,当n=1和n=2时,an<
;当n≥3时,an>
.…(12分)
| 1 |
| an+1 |
| 1 |
| k |
| 1 |
| an |
∴
| 1 |
| an+1 |
| 2 |
| k-1 |
| 1 |
| k |
| 1 |
| an |
| 2 |
| k-1 |
| 1 |
| k |
| 1 |
| an |
| 2 |
| k-1 |
| 1 |
| a1 |
| 2 |
| k-1 |
| 4 |
| 3 |
| 2 |
| k-1 |
若
| 4 |
| 3 |
| 2 |
| k-1 |
| 5 |
| 2 |
| 1 |
| an |
| 2 |
| k-1 |
若
| 4 |
| 3 |
| 2 |
| k-1 |
| 5 |
| 2 |
数列{
| 1 |
| an |
| 2 |
| k-1 |
| 4 |
| 3 |
| 2 |
| k-1 |
| 1 |
| k |
∴综上所述,当k=
| 5 |
| 2 |
| 1 |
| an |
| 2 |
| k-1 |
| 5 |
| 2 |
| 1 |
| an |
| 2 |
| k-1 |
(Ⅱ)当k=3时,数列{
| 1 |
| an |
| 1 |
| 3 |
| 1 |
| 3 |
∴
| 1 |
| an |
| 1 |
| 3 |
| 3n |
| 3n+1 |
| 1 |
| 3n+1 |
∴an-
| 3n+4 |
| 3n+5 |
| 1 |
| 3n+1 |
| 1 |
| 3n+5 |
| 1 |
| 3n+5 |
| 1 |
| 3n+1 |
| 3n-3n-4 |
| (3n+5)(3n+1) |
令F(x)=3x-3x-4(x≥1),则F′(x)=3xln3-3≥F′(1)>0,
∴F(x)在[1,+∞)上是增函数.
而F(1)=-4<0,F(2)=-1<0,F(3)=14>0,
∴①当n=1和n=2时,an<
| 3n+4 |
| 3n+5 |
②当n≥3时,3n+1>3n+5,即
| 1 |
| 3n+5 |
| 1 |
| 3n+1 |
| 3n+4 |
| 3n+5 |
∴综上所述,当n=1和n=2时,an<
| 3n+4 |
| 3n+5 |
| 3n+4 |
| 3n+5 |
点评:本题考查数列的递推关系式的应用,构造法与函数的导数判断函数值的大小,以及作差法的应用,考查分析问题解决问题的能力.
练习册系列答案
相关题目