题目内容
空间四边形OABC中,
=
,
=
,
=
,点M在OA上,且OM=2MA,N为BC的中点,则
= .
| OA |
| a |
| OB |
| b |
| OC |
| c |
| MN |
分析:画出图形,用
、
、
表示
、
,从而求出
.
| a |
| b |
| c |
| ON |
| OM |
| MN |
解答:
解:画出图形,如图:
∵
=
,
=
,
=
,点M在OA上,
且OM=2MA,N为BC的中点,
∴
=
=
,
=
(
+
)=
+
,
∴
=
-
=
+
-
;
故答案为:-
+
+
.
∵
| OA |
| a |
| OB |
| b |
| OC |
| c |
且OM=2MA,N为BC的中点,
∴
| OM |
| 2 |
| 3 |
| OA |
| 2 |
| 3 |
| a |
| ON |
| 1 |
| 2 |
| OB |
| OC |
| 1 |
| 2 |
| b |
| 1 |
| 2 |
| c |
∴
| MN |
| ON |
| OM |
| 1 |
| 2 |
| b |
| 1 |
| 2 |
| a |
| 2 |
| 3 |
| a |
故答案为:-
| 2 |
| 3 |
| a |
| 1 |
| 2 |
| b |
| 1 |
| 2 |
| c |
点评:本题考查了平面向量的线性运算,是基础题.
练习册系列答案
相关题目