题目内容
| OA |
| a |
| OB |
| b |
| OC |
| c |
| OA |
| MN |
分析:由题意,把
,
,
三个向量看作是基向量,由图形根据向量的线性运算,将
用三个基向量表示出来,即可得到答案,选出正确选项.
| OA |
| OB |
| OC |
| MN |
解答:
解:由题意
=
+
+
=
+
-
+
=-
+
+
-
=-
+
+
又
=
,
=
,
=
∴
=-
+
+
故选B.
| MN |
| MA |
| AB |
| BN |
=
| 1 |
| 3 |
| OA |
| OB |
| OA |
| 1 |
| 2 |
| BC |
=-
| 2 |
| 3 |
| OA |
| OB |
| 1 |
| 2 |
| OC |
| 1 |
| 2 |
| OB |
=-
| 2 |
| 3 |
| OA |
| 1 |
| 2 |
| OB |
| 1 |
| 2 |
| OC |
又
| OA |
| a |
| OB |
| b |
| OC |
| c |
∴
| MN |
| 2 |
| 3 |
| a |
| 1 |
| 2 |
| b |
| 1 |
| 2 |
| c |
故选B.
点评:本题考点是空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题.
练习册系列答案
相关题目