题目内容
设f(x)=(ax+b)sinx+(cx+d)cosx,试确定常数a,b,c,d,使得f′(x)=xcosx.分析:根据求导的乘法法则,先对f(x)进行求导,再将导函数和所给函数进行比较,可得.
解答:解:由已知f′(x)=[(ax+b)sinx+(cx+d)cosx]′
=[(ax+b)sinx]′+[(cx+d)cosx]′
=(ax+b)′sinx+(ax+b)(sinx)′+(cx+d)′cosx+(cx+d)•(cosx)′
=asinx+(ax+b)cosx+ccosx-(cx+d)sinx
=(a-cx-d)sinx+(ax+b+c)cosx.
又∵f′(x)=xcosx,
∴必须有
,即
解得a=d=1,b=c=0.
=[(ax+b)sinx]′+[(cx+d)cosx]′
=(ax+b)′sinx+(ax+b)(sinx)′+(cx+d)′cosx+(cx+d)•(cosx)′
=asinx+(ax+b)cosx+ccosx-(cx+d)sinx
=(a-cx-d)sinx+(ax+b+c)cosx.
又∵f′(x)=xcosx,
∴必须有
|
|
解得a=d=1,b=c=0.
点评:导数是近年来高考中必考内容,解答题中一般可涉及到.考查的重点在于导数的几何意义和导数对函数性质的研究,当然导数的计算更是做题的前提.
练习册系列答案
相关题目