题目内容
13.设函数f(x)=$\sqrt{3}$sinωx-cosωx的图象的一条对称轴是x=$\frac{π}{3}$,则ω的取值可以是( )| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 由三角函数公式化简可得f(x)=2sin(ωx-$\frac{π}{6}$),由对称性可得ω的方程,解方程结合选项可得.
解答 解:由三角函数公式化简可得:
f(x)=$\sqrt{3}$sinωx-cosωx
=2sin(ωx-$\frac{π}{6}$),
∵图象的一条对称轴是x=$\frac{π}{3}$,
∴ω•$\frac{π}{3}$-$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,
解得ω=3k+2,k∈Z,
结合选项可得只有C符合题意,
故选:C
点评 本题考查三角函数图象和对称性,属基础题.
练习册系列答案
相关题目
1.为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.
(1)请将上面的列联表补充完整;
(2)能否在犯错误的概率不超过0.005的前提下认为喜好体育运动与性别有关?说明你的理由;
下面的临界值表供参考:
(参考公式:K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
已知喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.
(1)请将上面的列联表补充完整;
(2)能否在犯错误的概率不超过0.005的前提下认为喜好体育运动与性别有关?说明你的理由;
| 喜好体育运动 | 不喜好体育运动 | 合计 | |
| 男生 | 5 | ||
| 女生 | 10 | ||
| 合计 | 50 |
| P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
8.下列函数中,在区间(0,+∞)上为增函数的是( )
| A. | y=$\frac{1}{x}$ | B. | y=-x2 | C. | y=($\frac{1}{2}$)x | D. | y=log2x |