题目内容
【题目】如图,在一条景观道的一端有一个半径为
米的圆形摩天轮O,逆时针
分钟转一圈,从
处进入摩天轮的座舱,
垂直于地面
,在距离
处
米处设置了一个望远镜
.
![]()
(1)同学甲打算独自乘坐摩天轮,但是其母亲不放心,于是约定在登上摩天轮座舱
分钟后,在座舱内向其母亲挥手致意,而其母亲则在望远镜
中仔细观看.问望远镜
的仰角
应调整为多少度?(精确到1度)
(2)在同学甲向其母亲挥手致意的同时,同一座舱的另一名乘客乙在拍摄地面上的一条绿化带
,发现取景的视角
恰为
,求绿化带
的长度(精确到1米)
【答案】(1)
(2)94米.
【解析】
因为摩天轮做匀速转动,逆时针15分钟转一圈,可得5分钟转过
,过点C作
于点H,利用解三角形可得望远镜B的仰角
由题意可求CD,利用正弦定理即可解得BD的长度.
(1)
逆时针
分钟转一圈,
![]()
分钟转过
,
过点
作
于点
,
![]()
则
,
,
答:望远镜的仰角
设置为![]()
(2)在
中,
,
![]()
由正弦定理得:
答:绿化带的长度为94米.
练习册系列答案
相关题目
【题目】一研学实践活动小组利用课余时间,对某公司1月份至5月份销售某种产品的销售量及销售单价进行了调查,月销售单价
(单位:元)和月销售量
(单位:百件)之间的一组数据如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 |
月销售单价 | 1.6 | 1.8 | 2 | 2.2 | 2.4 |
月销售量 | 10 | 8 | 7 | 6 | 4 |
(1)根据1至5月份的数据,求出
关于
的回归直线方程;
(2)预计在今后的销售中,月销售量与月销售单价仍然服从(1)中的关系,若该种产品的成本是1元/件,那么该产品的月销售单价应定为多少元才能获得最大月利润?(注:利润=销售收入-成本)
(回归直线方程
,其中
.参考数据:
,
)