题目内容

15.已知实数x,y满足:$\left\{\begin{array}{l}{x-y≤0}\\{x+y-4<0}\\{x-1≥0}\end{array}\right.$,则使等式(t+2)x+(t-1)y+2t+4=0成立的t取值范围为(  )
A.[-$\frac{5}{4}$,-$\frac{1}{2}$)B.(-∞,-$\frac{5}{4}$]∪(-$\frac{1}{2}$,+∞)C.[-$\frac{5}{4}$,1)D.[-$\frac{1}{2}$,1)

分析 由题意作平面区域,从而化简可得t=$\frac{-2x+y-4}{x+y+2}$=1-$\frac{3}{\frac{y}{x+2}+1}$,而$\frac{y}{x+2}$几何意义是点A(-2,0)与阴影内的点的连线的斜率,从而结合图象解得.

解答 解:由题意作平面区域如下,

∵(t+2)x+(t-1)y+2t+4=0,
∴t(x+y+2)+2x-y+4=0,
∴t=$\frac{-2x+y-4}{x+y+2}$=1-$\frac{3}{\frac{y}{x+2}+1}$,
$\frac{y}{x+2}$几何意义是点A(-2,0)与阴影内的点的连线的斜率,
而kAB=$\frac{1-0}{1+2}$=$\frac{1}{3}$,kAC=$\frac{3-0}{1+2}$=1,
故$\frac{1}{3}$≤$\frac{y}{x+2}$<1,
故$\frac{3}{2}$<$\frac{3}{\frac{y}{x+2}+1}$≤$\frac{9}{4}$,
故-$\frac{5}{4}$≤1-$\frac{3}{\frac{y}{x+2}+1}$<-$\frac{1}{2}$,
故选:A.

点评 本题考查了数形结合的思想应用,同时考查了转化的思想应用,关键在于化简得到t=1-$\frac{3}{\frac{y}{x+2}+1}$.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网