题目内容
给定正整数 n 和正数 M,对于满足条件a12+an+12≤M 的所有等差数列 a1,a2,a3,….,试求 S=an+1+an+2+…+a2n+1的最大值.
分析:设公差为d,an+1=a,由S=an+1+an+2+…a2n+1=(n+1)a+
d得,a+
=
,则有M≥
(
)2,下面由基本不等式的性质可解.
| n(n+1) |
| 2 |
| nd |
| 2 |
| S |
| n+1 |
| 4 |
| 10 |
| S |
| n+1 |
解答:解:设公差为d,an+1=a,
则S=an+1+an+2+…a2n+1是以an+1=a为首项,d为公差的等差数列的前(n+1)项和,
所以S=an+1+an+2+…a2n+1=(n+1)a+
d.
同除以(n+1),得 a+
=
.
则M≥a12+an+12=(α-nd)2+a2=
(a+
)2+
(4a-3nd)2≥
(
)2
因此|S|≤
(n+1)
,
且当 a=
,d=
•
时,
S=(n+1)〔
+
•
•
〕
=(n+1)
=
(n+1)
由于此时4a=3nd,故 a12+an+12=
(
)2=
•
M=M.
所以,S的最大值为
(n+1)
.
则S=an+1+an+2+…a2n+1是以an+1=a为首项,d为公差的等差数列的前(n+1)项和,
所以S=an+1+an+2+…a2n+1=(n+1)a+
| n(n+1) |
| 2 |
同除以(n+1),得 a+
| nd |
| 2 |
| S |
| n+1 |
则M≥a12+an+12=(α-nd)2+a2=
| 4 |
| 10 |
| nd |
| 2 |
| 1 |
| 10 |
| 4 |
| 10 |
| S |
| n+1 |
因此|S|≤
| ||
| 2 |
| M |
且当 a=
| 3 | ||
|
| M |
| 4 | ||
|
| 1 |
| n |
| M |
S=(n+1)〔
| 3 | ||
|
| M |
| n |
| 2 |
| 4 | ||
|
| 1 |
| n |
| M |
=(n+1)
| 5 | ||
|
| M |
| ||
| 2 |
| M |
由于此时4a=3nd,故 a12+an+12=
| 4 |
| 10 |
| S |
| n+1 |
| 4 |
| 10 |
| 10 |
| 4 |
所以,S的最大值为
| ||
| 2 |
| M |
点评:本题为数列和不等式的结合,正确变形时解决问题的关键,属中档题.
练习册系列答案
相关题目