题目内容
设中,角、、所对的边分别为、、,若,则 .
某班有学生50人,其中男同学30人,用分层抽样的方法从该班抽取5人去参加某社区服务活动.
(1)求从该班男女同学在各抽取的人数;
(2)从抽取的5名同学中任选2名谈此活动的感受,求选出的2名同学中恰有1名男同学的概率.
已知四边形为平行四边形,, 四边形为正方形,且平面平面.
(1)求证:平面;
(2)若为中点,证明:在线段上存在点,使得平面,并求出此时三棱锥的体积.
已知是虚数单位,复数满足,则( )
A. B. C. D.
如图,四棱锥中,平面底面.
(1)证明:;
(2)若与所成角的余弦值为,求二面角的余弦值.
已知函数的图象的相邻两条对称轴之间的距离为,且,则对于区间内的任意实数的最大值为( )
一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )
A.1 B.2 C.3 D.4
给出以下四个命题:
①若函数的定义域为,则函数的定义域为;
②函数的单调递减区间是;
③已知集合,则映射中满足的映射共有3个;
④若,且,.
其中正确的命题有______.(写出所有正确命题的序号)