题目内容
△ABC中
=
,
=
,
=
,|
|=
,|
|=1,|
|=1则
•
+
•
+
•
=( )
| AB |
| a |
| BC |
| b |
| CA |
| c |
| a |
| 2 |
| b |
| c |
| a |
| b |
| b |
| c |
| c |
| a |
分析:要求
•
+
•
+
•
可利用向量数量积的定义求但根据题中的条件不知向量间的夹角因此此法不通但注意到在三角形中
+
+
=
即
+
+
=
然后两边平方再代入化简即可求解.
| a |
| b |
| b |
| c |
| c |
| a |
| AB |
| BC |
| CA |
| 0 |
| a |
| b |
| c |
| 0 |
解答:解:∵
+
+
=
∴
+
+
=
∴(
+
+
)2=0
∴
2+
2+
2+2(
•
+
•
+
•
)=0
∵|
|=
,|
|=1,|
|=1
∴
•
+
•
+
•
=-2
故选C
| AB |
| BC |
| CA |
| 0 |
∴
| a |
| b |
| c |
| 0 |
∴(
| a |
| b |
| c |
∴
| a |
| b |
| c |
| a |
| b |
| a |
| c |
| b |
| c |
∵|
| a |
| 2 |
| b |
| c |
∴
| a |
| b |
| b |
| c |
| c |
| a |
故选C
点评:本题主要考查向量数量积的运算.解题的关键是要根据向量加法的三角形法则得出在三角形中有
+
+
=
即
+
+
=
!
| AB |
| BC |
| CA |
| 0 |
| a |
| b |
| c |
| 0 |
练习册系列答案
相关题目