题目内容
(2007•嘉定区一模)已知f(n)=1+
+
+…+
(n∈N),则f(n+1)-f(n)=( )
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3n-1 |
分析:由f(n)=1+
+
+…+
+
+
,知f(n+1)=1+
+
+…+
+
+
+
+
+
,由此能求出f(n+1)-f(n).
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3n-3 |
| 1 |
| 3n-2 |
| 1 |
| 3n-1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3n-3 |
| 1 |
| 3n-2 |
| 1 |
| 3n-1 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
| 1 |
| 3n+2 |
解答:解:∵f(n)=1+
+
+…+
+
+
,
∴f(n+1)=1+
+
+…+
+
+
+
+
+
,
∴f(n+1)-f(n)=
+
+
.
故选D.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3n-3 |
| 1 |
| 3n-2 |
| 1 |
| 3n-1 |
∴f(n+1)=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3n-3 |
| 1 |
| 3n-2 |
| 1 |
| 3n-1 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
| 1 |
| 3n+2 |
∴f(n+1)-f(n)=
| 1 |
| 3n |
| 1 |
| 3n+1 |
| 1 |
| 3n+2 |
故选D.
点评:本题考查数列的函数性质,解题时要认真审题,注意总结规律,合理地进行等价转化.
练习册系列答案
相关题目