题目内容
选修4—4:坐标系与参数方程
自极点O任意作一条射线与直线相交于点M,在射线OM上取点P,使得,求动点P的极坐标方程,并把它化为直角坐标方程.
如图,正方体中,点是的中点.
(1)求和平面所成角的余弦值;
(2)在上找一点,使得平面.
设复数满足,则的虚部为( )
A. B. C. D.
如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则在该几何体中,最长的棱的长是( )
A. B. C.6 D.
已知集合,,则集合中元素的个数为( )
A.5 B.6 C.7 D.8
如图,某城市小区有一个矩形休闲广场,米,广场的一角是半径为米的扇形绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅(宽度不计),点在线段上,并且与曲线相切;另一排为单人弧形椅沿曲线(宽度不计)摆放.已知双人靠背直排椅的造价每米为元,单人弧形椅的造价每米为元,记锐角,总造价为元.
(1)试将表示为的函数,并写出的取值范围;
(2)如何选取点的位置,能使总造价最小.
已知函数若关于的方程有两个不同的实数根,则实数的取值范围是 .
如图,四棱锥,底面为直角梯形,,底面,
为的中点,为棱的中点.
(Ⅰ)证明:平面;
(Ⅱ)已知,求点到平面的距离.
已知直线为参数),曲线(为参数).
(1)设与相交于两点,求;
(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.