题目内容

已知数学公式,记数列{an}的前n项和为Sn,则使Sn>0的n的最小值为


  1. A.
    10
  2. B.
    11
  3. C.
    12
  4. D.
    13
B
分析:由,可得a1+a10=a2+a9=…=a5+a6=0,a11>0,则有S9<0,S10=0,S11>0可求
解答:由
可得a1+a10=a2+a9=…=a5+a6=0,a11>0
∴S9<0,S10=0,S11>0
使Sn>0的n的最小值为11
故选:B
点评:本题主要考查了由数列的递推公式求解数列的和,解题的关键是归纳出a1+a10=a2+a9=…=a5+a6=0,a11>0
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网