题目内容
已知正项数列{an}的前n项和为Sn,且an+| 1 |
| an |
(Ⅰ)求证:数列{Sn2}是等差数列;
(Ⅱ)求解关于n的不等式an+1(Sn-1+Sn)>4n-8;
(Ⅲ)记数列bn=2Sn3,Tn=
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 | ||
|
| 3 |
| 2 |
| 1 | ||
|
分析:(Ⅰ)利用an=Sn-Sn-1,化简得Sn2-Sn-12=1.从而数列{Sn2}是等差数列;
(Ⅱ)由(I)知Sn2=n,从而Sn+12-Sn2>4n-8,即1>4n-8,故可解;
(Ⅲ)∵
=
<
<
-
可以证明Tn<
-
,同理可证1-
<Tn
(Ⅱ)由(I)知Sn2=n,从而Sn+12-Sn2>4n-8,即1>4n-8,故可解;
(Ⅲ)∵
| 1 |
| bn |
| 1 | ||
2n
|
| 1 | ||||
n(
|
| 1 | ||
|
| 1 | ||
|
| 3 |
| 2 |
| 1 | ||
|
| 1 | ||
|
解答:解:(Ⅰ)∵an+
=2Sn,∴an2+1=2anSn.当n≥2时,(Sn-Sn-1)2+1=2(Sn-Sn-1)Sn,
化简得Sn2-Sn-12=1.由a1+
=2a1,得a12=S12.
∴数列{Sn2}是等差数列;
(Ⅱ)由(I)知Sn2=n,又由an+1(Sn-1+Sn)>4n-8,得Sn+12-Sn2>4n-8,即1>4n-8,∴n<
.
又n∈N*,∴不等式的解集为{1,2}
(Ⅲ)当n≥2时,∵
=
<
<
-
,∴Tn<
-
,
∵
=
>
<
-
,∴Tn>1-
∴1-
<Tn<
-
.
| 1 |
| an |
化简得Sn2-Sn-12=1.由a1+
| 1 |
| a1 |
∴数列{Sn2}是等差数列;
(Ⅱ)由(I)知Sn2=n,又由an+1(Sn-1+Sn)>4n-8,得Sn+12-Sn2>4n-8,即1>4n-8,∴n<
| 9 |
| 4 |
又n∈N*,∴不等式的解集为{1,2}
(Ⅲ)当n≥2时,∵
| 1 |
| bn |
| 1 | ||
2n
|
| 1 | ||||
n(
|
| 1 | ||
|
| 1 | ||
|
| 3 |
| 2 |
| 1 | ||
|
∵
| 1 |
| bn |
| 1 | ||
2n
|
| 1 | ||||
n(
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
∴1-
| 1 | ||
|
| 3 |
| 2 |
| 1 | ||
|
点评:本题主要考查等差数列的证明,解不等式,要注意数列的特殊性,对于不等式的证明,利用了放缩法,有一定的技巧.
练习册系列答案
相关题目