题目内容

已知正项数列{an}的前n项和为Sn,且an+
1
an
=2Sn,n∈N*
(Ⅰ)求证:数列{Sn2}是等差数列;
(Ⅱ)求解关于n的不等式an+1(Sn-1+Sn)>4n-8;
(Ⅲ)记数列bn=2Sn3,Tn=
1
b1
+
1
b2
+
…+
1
bn
,证明:1-
1
n+1
<Tn
3
2
-
1
n
分析:(Ⅰ)利用an=Sn-Sn-1,化简得Sn2-Sn-12=1.从而数列{Sn2}是等差数列;
(Ⅱ)由(I)知Sn2=n,从而Sn+12-Sn2>4n-8,即1>4n-8,故可解;
(Ⅲ)∵
1
bn
=
1
2n
n
1
n(
n
+
n-1
)
1
n-1
-
1
n
可以证明Tn
3
2
-
1
n
,同理可证1-
1
n+1
<Tn
解答:解:(Ⅰ)∵an+
1
an
=2Sn,∴an2+1=2anSn.当n≥2时,(Sn-Sn-12+1=2(Sn-Sn-1)Sn
化简得Sn2-Sn-12=1.由a1+
1
a1
=2a1,得a12=S12
∴数列{Sn2}是等差数列;
(Ⅱ)由(I)知Sn2=n,又由an+1(Sn-1+Sn)>4n-8,得Sn+12-Sn2>4n-8,即1>4n-8,∴n<
9
4

又n∈N*,∴不等式的解集为{1,2}
(Ⅲ)当n≥2时,∵
1
bn
=
1
2n
n
1
n(
n
+
n-1
)
1
n-1
-
1
n
,∴Tn
3
2
-
1
n

1
bn
=
1
2n
n
1
n(
n
+
n+1
)
1
n
-
1
n+1
,∴Tn>1-
1
n+1

∴1-
1
n+1
<Tn
3
2
-
1
n
点评:本题主要考查等差数列的证明,解不等式,要注意数列的特殊性,对于不等式的证明,利用了放缩法,有一定的技巧.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网