题目内容
(2011•天津模拟)设奇函数y=f(x)(x∈R),满足对任意t∈R都有f(t)=f(1-t),且x∈[0,
]时,f(x)=-x2,则f(3)+f(-
)的值等于
| 1 |
| 2 |
| 3 |
| 2 |
-
| 1 |
| 4 |
-
.| 1 |
| 4 |
分析:由题设知f(3)=f(1-3)=f(-2)=-f(2)=-[f(1-2)]=-f(-1)=f(1)=f(0)=0.f(-
)=-f(
)=-[f(1-
)]=-f(-
)=f(
)=-
.所以f(3)+f(-
)=-
.
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 2 |
| 1 |
| 4 |
解答:解:∵奇函数y=f(x)(x∈R),满足对任意t∈R都有f(t)=f(1-t),
且x∈[0,
]时,f(x)=-x2,
∴f(3)=f(1-3)=f(-2)=-f(2)=-[f(1-2)]=-f(-1)=f(1)=f(0)=0.
f(-
)=-f(
)=-[f(1-
)]=-f(-
)=f(
)=-
.
∴f(3)+f(-
)=-
.
故答案为:-
.
且x∈[0,
| 1 |
| 2 |
∴f(3)=f(1-3)=f(-2)=-f(2)=-[f(1-2)]=-f(-1)=f(1)=f(0)=0.
f(-
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
∴f(3)+f(-
| 3 |
| 2 |
| 1 |
| 4 |
故答案为:-
| 1 |
| 4 |
点评:本题考查函数值的求法,解题时要注意孙数的奇偶性和对任意t∈R都有f(t)=f(1-t),且x∈[0,
]时,f(x)=-x2的灵活运用,合理地进行等价转化.
| 1 |
| 2 |
练习册系列答案
相关题目