题目内容
已知向量
=(
cos
,cos
),
=(sin
,cos
).
(Ⅰ)若
•
=
,求cos(x+
)的值;
(Ⅱ)记f(x)=
•
-
,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(
a-c)cosB=bcosC,求f(A)的取值范围.
| m |
| 3 |
| x |
| 4 |
| x |
| 4 |
| n |
| x |
| 4 |
| x |
| 4 |
(Ⅰ)若
| m |
| n |
| ||
| 2 |
| π |
| 3 |
(Ⅱ)记f(x)=
| m |
| n |
| 1 |
| 2 |
| 2 |
分析:(Ⅰ)利用两个向量的数量积公式,三角函数的恒等变换化简
•
的解析式为sin(
+
)+
,利用诱导公式求出
cos(x+
)的值.
(Ⅱ)根据f(x)=
•
-
=sin(
+
),再利用条件可得
sinAcosB=sinA,求出cosB=
,可得B的值,
可得A的范围,根据
+
的范围求得f(A)的范围.
| m |
| n |
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
cos(x+
| π |
| 3 |
(Ⅱ)根据f(x)=
| m |
| n |
| 1 |
| 2 |
| x |
| 2 |
| π |
| 6 |
| 2 |
| ||
| 2 |
可得A的范围,根据
| A |
| 2 |
| π |
| 6 |
解答:解:(Ⅰ)由题意可得
•
=
=
cos
sin
+cos2
=
sin
+
cos
+
,
即sin(
+
)=
,所以cos(x+
)=1-2sin2(
+
)=-
.------5分
(Ⅱ)∵f(x)=
•
-
=sin(
+
),则f(A)=sin(
+
) (
a-c)cosB=bcosC,
则(
sinA-sinC)cosB=sinBcosC,即
sinAcosB=sinA,
∴cosB=
,则 B=
.
∵A∈(0,
π),
+
∈(
,
),∴f(A)∈(
,1].-------10分
| m |
| n |
| ||
| 2 |
| 3 |
| x |
| 4 |
| x |
| 4 |
| x |
| 4 |
| ||
| 2 |
| x |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
即sin(
| x |
| 2 |
| π |
| 6 |
| ||
| 2 |
| π |
| 3 |
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
(Ⅱ)∵f(x)=
| m |
| n |
| 1 |
| 2 |
| x |
| 2 |
| π |
| 6 |
| A |
| 2 |
| π |
| 6 |
| 2 |
则(
| 2 |
| 2 |
∴cosB=
| ||
| 2 |
| π |
| 4 |
∵A∈(0,
| 3 |
| 4 |
| A |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 13π |
| 24 |
| 1 |
| 2 |
点评:本题主要考查两个向量的数量积公式,三角函数的恒等变换,诱导公式的应用,属于中档题.
练习册系列答案
相关题目