题目内容
1.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,则实数a的取值范围是(-∞,-5].分析 利用函数奇偶性和单调性之间的关系,转化不等式f(x-a)≥f(3x+1)为函数的最值问题,解不等式即可.
解答 解:∵当x≥0时,f(x)=x2,
∴此时函数f(x)单调递增,
∵f(x)是定义在R上的奇函数,
∴函数f(x)在R上单调递增,
若对任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,
则x+a≥3x+1恒成立,即a≥2x+1恒成立,
∵x∈[a,a+2],
∴(2x+1)max=2(a+2)+1=2a+5,
即a≥2a+5,
解得a≤-5,
即实数a的取值范围是(-∞,-5];
故答案为:(-∞,-5];
点评 本题主要考查函数奇偶性和单调性的应用,以及不等式恒成立问题,综合考查函数的性质.
练习册系列答案
相关题目
16.已知函数f(x)在定义域[-3,3]上是偶函数,在[0,3]上单调递增,并且f(-m2-1)>f(-m2+2m-2),则m的取值范围是( )
| A. | $(1-\sqrt{2},\sqrt{2}]$ | B. | $[1-\sqrt{2},\sqrt{2}]$ | C. | $[\frac{1}{2},\sqrt{2}]$ | D. | $(\frac{1}{2},\sqrt{2}]$ |
13.已知向量$\overrightarrow a$=(0,4),$\overrightarrow b$=(2,2),则下列结论中正确的是( )
| A. | $|{\overrightarrow a}|=|{\overrightarrow b}|$ | B. | $\overrightarrow a⊥\overrightarrow b$ | C. | $(\overrightarrow a-\overrightarrow b)∥\overrightarrow a$ | D. | $\overrightarrow a•\overrightarrow b=8$ |