题目内容
在数列{an}中,a1=-
,n∈N*,当n≥2时,有3an-2an-1+n+2=0,设bn=an+n+1.
(I)求b1,b2;
(II)证明数列{bn-1}是等比数列;
(III)设cn=
,求数列{cn}的前n项和Tn.
| 1 |
| 3 |
(I)求b1,b2;
(II)证明数列{bn-1}是等比数列;
(III)设cn=
(
| ||
2
|
(I)∵a1=-
,bn=an+n+1∴b1=a1+2=
当n=2时,3a2-2a1+4=0可得a2=-
∴b2=3+a2=
(II)由3an-2an-1+n+2=0得,3(an+n)=2(an-1+n-1)
=
,n≥2即
=
∵b1- 1=
≠0
∴{bn-1}是以
为首项,
为公比的等比数列
(III)由(I)可得bn=
bn-1+
∴2bn-1+1=3bn,所以bn=1+(
)n
cn=
=
=
=
-
Tn=C1+C2+…+Cn=
-
=
-
| 1 |
| 3 |
| 5 |
| 3 |
当n=2时,3a2-2a1+4=0可得a2=-
| 14 |
| 9 |
∴b2=3+a2=
| 13 |
| 9 |
(II)由3an-2an-1+n+2=0得,3(an+n)=2(an-1+n-1)
| an+n |
| an-1+n-1 |
| 2 |
| 3 |
| bn-1 |
| bn-1-1 |
| 2 |
| 3 |
∵b1- 1=
| 2 |
| 3 |
∴{bn-1}是以
| 2 |
| 3 |
| 2 |
| 3 |
(III)由(I)可得bn=
| 2 |
| 3 |
| 1 |
| 3 |
∴2bn-1+1=3bn,所以bn=1+(
| 2 |
| 3 |
cn=
(
| ||
2
|
(
| ||
| (2bn+1)bn |
| bn-bn+1 |
| bnbn+1 |
| 1 |
| bn+1 |
| 1 |
| bn |
Tn=C1+C2+…+Cn=
| 1 |
| bn+1 |
| 1 |
| b1 |
| 3n+1 |
| 2n+1+ 3n+1 |
| 3 |
| 5 |
练习册系列答案
相关题目