题目内容

在数列{an}中,a1=-
1
3
,n∈N*
,当n≥2时,有3an-2an-1+n+2=0,设bn=an+n+1.
(I)求b1,b2
(II)证明数列{bn-1}是等比数列;
(III)设cn=
(
2
3
)
n
2
b2n
+bn
,求数列{cn}的前n项和Tn
(I)∵a1=-
1
3
,bn=an+n+1∴b1=a1+2=
5
3

当n=2时,3a2-2a1+4=0可得a2=-
14
9

b2=3+a2=
13
9

(II)由3an-2an-1+n+2=0得,3(an+n)=2(an-1+n-1)
an+n
an-1+n-1
=
2
3
,n≥2即
bn-1
bn-1-1
=
2
3

b1- 1=
2
3
≠0

{bn-1}是以
2
3
为首项,
2
3
为公比的等比数列

(III)由(I)可得bn=
2
3
bn-1+
1
3

∴2bn-1+1=3bn,所以bn=1+(
2
3
)
n

cn=
(
2
3
)
n
2
b2n
+bn
=
(
2
3
)
n
(2bn+1)bn
=
bn-bn+1
bnbn+1
=
1
bn+1
-
1
bn

Tn=C1+C2+…+Cn=
1
bn+1
-
1
b1
=
3n+1
2n+13n+1
-
3
5
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网