题目内容

19.函数y=$\frac{2{x}^{2}+2x+1}{{x}^{2}+x+1}$的取值范围为[-$\frac{2}{5}$,2).

分析 求出函数的定义域,利用判别式△法进行求解即可.

解答 解:∵x2+x+1>0恒成立,
∴函数的定义域为(-∞,+∞),
由y=$\frac{2{x}^{2}+2x+1}{{x}^{2}+x+1}$得(x2+x+1)y=2x2+2x+1,
即(2-y)x2+(2-y)x+1-y=0,
若y=2,在方程等价为1-2=0,即-1=0,则方程不成立,
∴y≠2,
则由判别式△≥0得(2-y)2-4(2-y)(1-y)=(2-y)[2-y-4(1+y)]≥0,
即(y-2)(5y+2)≤0,
解得-$\frac{2}{5}$≤y≤2,
∵y≠2,
∴-$\frac{2}{5}$≤y<2,
即函数的值域为[-$\frac{2}{5}$,2),
故答案为:[-$\frac{2}{5}$,2)

点评 本题主要考查函数值域的求解,利用判别式法是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网