题目内容
将函数的图象上每一点向右平移个单位,得函数的图象,则= .
已知向量a和b的夹角是60°, 。
已知函数在上单调递增,在上单调递减,则 .
某小区想利用一矩形空地建造市民健身广场,设计时决定保留空地边上的一个水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一条直线交于,从而得到五边形的市民健身广场.
(Ⅰ)假设,试将五边形的面积表示为的函数,并注明函数的定义域;
(Ⅱ)问:应如何设计,可使市民健身广场的面积最大?并求出健身广场的最大面积.
如图,已知正方形的边长为3,为的中点,与交于点,则 .
已知函数,其中
(Ⅰ)若,试判断函数的单调性,并说明理由;
(Ⅱ)设函数,若对任意的,总存在唯一的实数,使得成立,试确定实数的取值范围.
已知圆C:,点P在直线l:上,若圆C上存在两点A、B使得,则点P的横坐标的取值范围是 .
(本题满分14分)已知函数
(1)将写成的形式,并求其图象对称中心的横坐标;
(2)如果的三边满足,且边所对的角为,试求的范围及此时函数的值域.
(本小题满分14分)已知向量=(,1),向量=(sin2x,cos2x),函数
(1)求函数的表达式,并作出函数在一个周期内的简图(用五点法列表描点);
(2)求函数的周期,并写单调区间.