题目内容
5.若p的否命题是命题q的逆否命题,则命题p是命题q的( )| A. | 逆命题 | B. | 否命题 | C. | 逆否命题 | D. | p与q是同一命题 |
分析 根据四中命题的关系,判断即可.
解答 解:因为否命题和逆命题互为逆否命题,
故命题p是命题q的逆命题,
故选:A.
点评 本题主要考查四种命题及其关系.要注意命题的否定,命题的否命题是不同的概念.切莫混淆.
练习册系列答案
相关题目
4.若f(x)=x2-2,则f(-1)=( )
| A. | -1 | B. | 0 | C. | 3 | D. | 2 |
16.某校为了解学生一次考试后数学、物理两个科目的成绩情况,从中随机抽取了25位考
生的成绩进行统计分析.25位考生的数学成绩已经统计在茎叶图中,物理成绩如下:
90 71 64 66 72 39 49 46 55 56 85 52 6l
80 66 67 78 70 51 65 42 73 77 58 67

(1)请根据数据在答题卡的茎叶图中完成物理成绩统计如图1;
(2)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图如图2;
数学成绩的频数分布表如下表:
(3)设上述样本中第i位考生的数学、物理成绩分别为xi,yi(i=1,2,3,…,25).通过对样本数据进行初步处理发现:数学、物理成绩具有线性相关关系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}$xi=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(x1-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)=5524,$\frac{4698}{5524}$≈0.85
求y关于x的线性回归方程,并据此预测当某考生的数学成绩为100分时,该考生的物理成绩(精确到1分).
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{1}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
生的成绩进行统计分析.25位考生的数学成绩已经统计在茎叶图中,物理成绩如下:
90 71 64 66 72 39 49 46 55 56 85 52 6l
80 66 67 78 70 51 65 42 73 77 58 67
(1)请根据数据在答题卡的茎叶图中完成物理成绩统计如图1;
(2)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图如图2;
数学成绩的频数分布表如下表:
| 数学成绩分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) | [100,110) | [110,120] |
| 频数 |
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}$xi=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(x1-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)=5524,$\frac{4698}{5524}$≈0.85
求y关于x的线性回归方程,并据此预测当某考生的数学成绩为100分时,该考生的物理成绩(精确到1分).
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{1}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
15.命题p:?x∈(-∞,0),2x>3x;命题q:?x∈(0,+∞),$\sqrt{x}$>x3; 则下列命题中真命题是( )
| A. | p∧q | B. | (¬p)∧q | C. | (¬p)∨(¬q) | D. | p∧(¬q) |