题目内容
(
-
)5展开式中的常数项为( )
| 3 | x |
| 2 | ||
|
分析:由二项式定理的通项公式可知,展开式中通项公式Tr+1=(-2)r
x
,然后令10-5r=0可求r,代入通项可求常数项
| C | r 5 |
| 10-5r |
| 6 |
解答:解:由二项式定理的通项公式可知,展开式中通项公式Tr+1=
(
)5-r(-
)r
=(-2)r
x
令10-5r=0可得r=2
常数项为T3=4
=40
故选B
| C | r 5 |
| 3 | x |
| 2 | ||
|
=(-2)r
| C | r 5 |
| 10-5r |
| 6 |
令10-5r=0可得r=2
常数项为T3=4
| C | 2 5 |
故选B
点评:本题主要考查了利用二项展开式的通项求解展开式的指定项,属于基础试题
练习册系列答案
相关题目
若(
-
)n展开式中含
的项是第8项,则展开式含
的项是( )
| 3 | x |
| 2 |
| x |
| 3 | x |
| 1 |
| x |
| A、第8项 | B、第9项 |
| C、第10项 | D、第11项 |