题目内容
17.焦点在x轴的椭圆,顺次连接椭圆的短轴顶点和焦点形成一边长为$\sqrt{2}$的正方形,求:(1)椭圆的标准方程;
(2)椭圆的焦点坐标、顶点坐标和离心率.
分析 (1)设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),根据顺次连接椭圆的短轴顶点和焦点形成一边长为$\sqrt{2}$的正方形,可得b=c=1,a2=b2+c2.即可得出.
(2)由b=c=1,a2=2.即可得出椭圆的焦点坐标、顶点坐标和离心率.
解答 解:(1)设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),∵顺次连接椭圆的短轴顶点和焦点形成一边长为$\sqrt{2}$的正方形,
∴b=c=1,∴a2=b2+c2=2.
∴椭圆的标准方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1.
(2)由b=c=1,a2=2.
可得焦点坐标(±1,0),顶点$(±\sqrt{2},0)$,(0,±1).
离心率e=$\frac{c}{a}$=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
点评 本题考查了椭圆的标准方程及其性质、正方形的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
9.命题“?x∈(-1,+∞),ln(x+1)<x”的否定是( )
| A. | ?x∉(-1,+∞),ln(x+1)<x | B. | ?x0∉(-1,+∞),ln(x0+1)<x0 | ||
| C. | ?x∈(-1,+∞),ln(x+1)≥x | D. | ?x0∈(-1,+∞),ln(x0+1)≥x0 |
9.已知x,y满足约束条件$\left\{\begin{array}{l}{x-2y+4≥0}\\{x+y-2≤0}\\{y≥0}\\{\;}\end{array}\right.$,若目标函数z=ax-y仅在点(0,2)处取得最小值,则a的取值范围是( )
| A. | (-$\frac{1}{2}$,1) | B. | (-∞,-1)∪($\frac{1}{2}$,+∞) | C. | (-1,$\frac{1}{2}$) | D. | (-∞,-$\frac{1}{2}$)∪(1,+∞) |
13.已知点(-$\sqrt{2}$,0)到双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的距离为$\frac{\sqrt{5}}{5}$,则该双曲线的离心率为( )
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{10}}{3}$ | D. | $\sqrt{5}$+1 |
6.将函数y=3sin(2x+$\frac{π}{3}$)图象上各点的横坐标伸长到原来的3倍,再向右平移$\frac{π}{8}$个单位,得到函数y=f(x).则函数y=f(x)的解析式是( )
| A. | f(x)=3sin($\frac{2x}{3}$+$\frac{π}{4}$) | B. | f(x)=3sin($\frac{2x}{3}$$+\frac{5π}{24}$) | C. | f(x)=3sin(6x$-\frac{5π}{12}$) | D. | f(x)=3sin(6x$+\frac{5π}{24}$) |