题目内容
5.下列命题中,真命题是( )| A. | ?x∈R,x2≥x | |
| B. | 命题“若x=1,则x2=1”的逆命题 | |
| C. | ?α0,β0∈R,使得sin(α0+β0)=sinα0+sinβ0 | |
| D. | 命题“若x≠y,则sinx≠siny”的逆否命题 |
分析 举出反例x∈(0,1)可判断A;写出原命题的逆命题,可判断B;举出正例α0=β0=0,可判断C;写出原命题的逆否命题,可判断D.
解答 解:当x∈(0,1)时,x2<x,故?x∈R,x2≥x错误;
命题“若x=1,则x2=1”的逆命题为命题“若x2=1,则x=1”,为假命题;
?α0=β0=0∈R,使得sin(α0+β0)=sinα0+sinβ0,正确;
命题“若x≠y,则sinx≠siny”的逆否命题为命题“若sinx=siny,则x=y”,为假命题;
故选:C
点评 本题以命题的真假判断与应用为载体,考查了全称命题,特称命题,四种命题,属于基础题.
练习册系列答案
相关题目
16.已知在三角形ABC中,AB=AC,BC=4,∠BAC=120°,$\overrightarrow{BE}$=3$\overrightarrow{EC}$,若P是BC边上的动点,则$\overrightarrow{AP}$•$\overrightarrow{AE}$的取值范围是( )
| A. | [-1,3] | B. | $[{-\frac{2}{3},3}]$ | C. | $[{-\frac{2}{3},\frac{10}{3}}]$ | D. | $[{-1,\frac{10}{3}}]$ |
13.已知等差数列{an}的前n项和为Sn,公差为2,且a1,S2,S4成等比数列,则数列{an}的通项公式an等于( )
| A. | 2n+1 | B. | 2n-3 | C. | 2n-1 | D. | 2n |
20.中国柳州从2011年起每年国庆期间都举办一届国际水上狂欢节,到2016年已举办了六届,旅游部门统计在每届水上狂欢节期间,吸引了不少外地游客到柳州,这将极大地推进柳州的旅游业的发展,现将前五届水上狂欢节期间外地游客到柳州的人数统计表如表:
(1)求y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)旅游部门统计在每届水上狂欢节期间,每位外地游客可为本市增加100元左右的旅游收入,利用(1)中的线性回归方程,预测2017年第7届柳州国际水上狂欢节期间外地游客可为本市增加的旅游收入达多少?
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.
| 份(x) | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 |
| 水上狂欢节届编号x | 1 | 2 | 3 | 4 | 5 |
| 外地游客人数y(单位:十万) | 0.6 | 0.8 | 0.9 | 1.2 | 1.5 |
(2)旅游部门统计在每届水上狂欢节期间,每位外地游客可为本市增加100元左右的旅游收入,利用(1)中的线性回归方程,预测2017年第7届柳州国际水上狂欢节期间外地游客可为本市增加的旅游收入达多少?
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.
6.在一个锐二面角的一个面内有一点,它到棱的距离等于到另一个平面的距离的2倍,则二面角大小为( )
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |