题目内容
设a1=1,a2=
,an+2=
an+1-
an,
(1)求数列{an}的通项公式.
(2)求数列{nan}的前n项的和.
| 5 |
| 3 |
| 5 |
| 3 |
| 2 |
| 3 |
(1)求数列{an}的通项公式.
(2)求数列{nan}的前n项的和.
分析:(1)把已知递推式变形为an+2-
an+1=an+1-
an,递推下去即可得出:当n≥2时,an-
an-1=1,再变形为:an-3=
(an-1-3),利用等比数列的通项公式即可得出.
(2)利用(1)和“错位相减法”及其等比数列的前n项和公式即可得出.
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
(2)利用(1)和“错位相减法”及其等比数列的前n项和公式即可得出.
解答:解:(1)∵a1=1,a2=
,an+2=
an+1-
an,
∴an+2-
an+1=an+1-
an=…=a2-
a1=
-
×1=1,
∴当n≥2时,an-
an-1=1,
∴an-3=
(an-1-3),
∴数列{an-3}是首项为-2,公比为
的等比数列.
∴an=(-2)×(
)n-1+3.
(2),由(1)知:nan=-2n(
)n-1+3n,
设数列{2n(
)n-1}的前n项和为:Tn=2[1+2×
+3×(
)2+…+n×(
)n-1],
则
Tn=2[1×
+2×(
)2+…+(n-1)×(
)n-1+n×(
)n]
上两式相减得:
Tn=2[1+
+(
)2+…+(
)n-1-n×(
)n]
=2×[
-n×(
)n]
=6[1-(
)n]-2n×(
)n,
∴Tn=18[1-(
)n]-6n×(
)n,
设所求数列{nan}的前n项和为Sn,
∴Sn=-18[1-(
)n]+6n×(
)n+3×
=(18-6n)×(
)n+
+
-18.
| 5 |
| 3 |
| 5 |
| 3 |
| 2 |
| 3 |
∴an+2-
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 5 |
| 3 |
| 2 |
| 3 |
∴当n≥2时,an-
| 2 |
| 3 |
∴an-3=
| 2 |
| 3 |
∴数列{an-3}是首项为-2,公比为
| 2 |
| 3 |
∴an=(-2)×(
| 2 |
| 3 |
(2),由(1)知:nan=-2n(
| 2 |
| 3 |
设数列{2n(
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
则
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
上两式相减得:
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
=2×[
1-(
| ||
1-
|
| 2 |
| 3 |
=6[1-(
| 2 |
| 3 |
| 2 |
| 3 |
∴Tn=18[1-(
| 2 |
| 3 |
| 2 |
| 3 |
设所求数列{nan}的前n项和为Sn,
∴Sn=-18[1-(
| 2 |
| 3 |
| 2 |
| 3 |
| n(n+1) |
| 2 |
| 2 |
| 3 |
| 3n2 |
| 2 |
| 3n |
| 2 |
点评:正确理解递推公式的含义和熟练变形利用等比数列的通项公式、及掌握“错位相减法”及等比数列的前n项和公式等是解题的关键.
练习册系列答案
相关题目