题目内容
6.在△ABC中,若b=4,c=6,A=60°,则a等于( )| A. | $2\sqrt{7}$ | B. | 28 | C. | $2\sqrt{19}$ | D. | 76 |
分析 利用余弦定理即可得出.
解答 解:由余弦定理可得:a2=b2+c2-2bccosA=42+62-2×4×6cos60°=28,
解得a=2$\sqrt{7}$.
故选:A.
点评 本题考查了余弦定理的应用,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
11.函数y=f(x)的值域为[a,b],则f(x+1)的值域为( )
| A. | [-a,-b] | B. | [a+1,b+1] | C. | [a-1,b-1] | D. | [a,b] |
18.下列关系中正确的是( )
| A. | ${(\frac{1}{2})}^{\frac{2}{3}}$<${(\frac{1}{5})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{1}{3}}$ | B. | ${(\frac{1}{2})}^{\frac{1}{3}}$<${(\frac{1}{2})}^{\frac{2}{3}}$<${(\frac{1}{5})}^{\frac{2}{3}}$ | ||
| C. | ${(\frac{1}{5})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{1}{3}}$<${(\frac{1}{2})}^{\frac{2}{3}}$ | D. | ${(\frac{1}{5})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{1}{3}}$ |
15.在△ABC中,角A,B,C所对边分别为a,b,c,若a,b,c成等比数列,A=60°,则$\frac{bsinB}{c}$=( )
| A. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |