题目内容

设f(x)=axg(x)=x
1
3
,h(x)=logax,实数a满足loga(1-a2)>0,那么当x>1时必有(  )
A.h(x)<g(x)<f(x)B.h(x)<f(x)<g(x)C.f(x)<g(x)<h(x)D.f(x)<h(x)<g(x)
∵a满足loga(1-a2)>0,
∴a>1时,1-a2>1不成立;
0<a<1时,0<1-a2<1,
∴0<a<1.
∵x>1,
∴0<f(x)=ax<a0=1,
g(x)=x
1
3
>1,
h(x)=logax<0,
∴h(x)<f(x)<g(x).
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网