题目内容
在数列{an}中,a1=1,an+1=
(n∈N*).
(Ⅰ)求a2,a3,a4;
(Ⅱ)猜想an;(不用证明)
(Ⅲ)若数列bn=
,求数列{bn}的前n项和sn.
| 2an |
| 2+an |
(Ⅰ)求a2,a3,a4;
(Ⅱ)猜想an;(不用证明)
(Ⅲ)若数列bn=
| an |
| n |
(Ⅰ)∵a1=1,an+1=
∴a2=
=
,a3=
=
,a4=
=
.
(Ⅱ)猜想:an=
.
(Ⅲ)由(Ⅱ)知:bn=
=
=2(
-
)
从而Sn=b1+b2+…+bn
=2[(1-
)+(
-
)+…+(
-
)]=2(1-
)=
| 2an |
| 2+an |
∴a2=
| 2a1 |
| 2+a1 |
| 2 |
| 3 |
| 2a2 |
| 2+a2 |
| 2 |
| 4 |
| 2a3 |
| 2+a3 |
| 2 |
| 5 |
(Ⅱ)猜想:an=
| 2 |
| n+1 |
(Ⅲ)由(Ⅱ)知:bn=
| an |
| n |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
从而Sn=b1+b2+…+bn
=2[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 2n |
| n+1 |
练习册系列答案
相关题目