题目内容

2.如图,已知长方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求证:AD⊥BM;
(2)若点E是线段DB上的一动点,问点E在何位置时,二面角E-AM-D的余弦值为$\frac{{\sqrt{2}}}{2}$.

分析 (1)推导出BM⊥AM,从而BM⊥平面ADM,由此能证明AD⊥BM.
(2)以O为原点,OA为x轴,ON为y轴,OD为z轴,建立空间直角坐标系,利用向量法能求出E为BD的三等分点.

解答 证明:(1)∵长方形ABCD中,$AB=2\sqrt{2}$,$AD=\sqrt{2}$,M为DC的中点,
∴AM=BM=2,∴BM⊥AM.
∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM?平面ABCM,
∴BM⊥平面ADM,
∵AD?平面ADM,∴AD⊥BM.
(2)以O为原点,OA为x轴,ON为y轴,OD为z轴,
建立如图所示的直角坐标系
设$\overrightarrow{DE}=λ\overrightarrow{DB}$,则平面AMD的一个法向量$\overrightarrow n=({0,1,0})$,
$\overrightarrow{ME}=\overrightarrow{MD}+λ\overrightarrow{DB}$=(1-λ,2λ,1-λ),$\overrightarrow{AM}=({-2,0,0})$,
设平面AME的一个法向量$\overrightarrow m=({x,y,z})$,
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AM}=0}\\{\overrightarrow{m}•\overrightarrow{ME}=0}\end{array}\right.$,∴$\left\{\begin{array}{l}2x=0\\ 2λy+({1-λ})z=0\end{array}\right.$
取y=1,得x=0,y=1,$z=\frac{2λ}{λ-1}$,∴$\overrightarrow m=({0,1,\frac{2λ}{λ-1}})$,
∵$|{cos\left?{\overrightarrow m,\overrightarrow n}\right>}|$=$\frac{{|{\overrightarrow m•\overrightarrow n}|}}{{|{\overrightarrow m}||{\overrightarrow n}|}}=\frac{{\sqrt{2}}}{2}$.∴得$λ=\frac{1}{3}$或λ=-1,经检验得$λ=\frac{1}{3}$满足题意.
∴E为BD的三等分点.

点评 本题考查线线垂直的证明,考查满足条件的点位置的判断与求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、数据处理能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网