题目内容
1.设x,y∈R,则x>y>0是|x|>|y|的( )| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分又不必要条件 |
分析 根据不等式的性质结合 充分必要条件的定义分别判断其充分性和必要性即可.
解答 解:x>y>0”一定能推出“|x|>|y|”.
当|x|>|y|,当x=-2时,y=-1时,成立,则推不出x>y>0
故“x>y>0”是“|x|>|y|”的充分非必要条件,
故选:A
点评 本题考查的知识点是充要条件的判断,其中熟练掌握充要条件的定义是解答此类问题的关键.
练习册系列答案
相关题目
16.已知sinα>0,且$\frac{{2tan\frac{α}{2}}}{{1-{{tan}^2}\frac{α}{2}}}<0$,则α所在象限为( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
6.
某商场对甲、乙两种品牌的商品进行为期100天的营销活动,为调查这100天的日销售情况,随机抽取了10天的日销售量(单位:件)作为样本,样本数据的茎叶图如图.若日销量不低于50件,则称当日为“畅销日”.
(Ⅰ)现从甲品牌日销量大于40且小于60的样本中任取两天,求这两天都是“畅销日”的概率;
(Ⅱ)用抽取的样本估计这100天的销售情况,请完成这两种品牌100天销量的2×2列联表,并判断是否有99%的把握认为品牌与“畅销日”天数有关.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(Ⅰ)现从甲品牌日销量大于40且小于60的样本中任取两天,求这两天都是“畅销日”的概率;
(Ⅱ)用抽取的样本估计这100天的销售情况,请完成这两种品牌100天销量的2×2列联表,并判断是否有99%的把握认为品牌与“畅销日”天数有关.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
| 畅销日天数 | 非畅销日天数 | 合计 | |
| 甲品牌 | 50 | 50 | 100 |
| 乙品牌 | 30 | 70 | 100 |
| 合计 | 80 | 120 | 200 |