题目内容
在数列{an}中,a1=
,且满足an=
(n≥2),则an=
.
| 2 |
| 3 |
| 3an-1 |
| 3+2an-1 |
| 6 |
| 4n+5 |
| 6 |
| 4n+5 |
分析:利用“取倒数法”和等差数列的通项公式即可得出.
解答:解:∵a1=
,且满足an=
(n≥2),∴
=
+
,即
-
=
.
∴数列{
}是以
=
为首项,
为公差的等差数列;
∴
=
+(n-1)•
=
.
∴an=
.
故答案为
.
| 2 |
| 3 |
| 3an-1 |
| 3+2an-1 |
| 1 |
| an |
| 1 |
| an-1 |
| 2 |
| 3 |
| 1 |
| an |
| 1 |
| an-1 |
| 2 |
| 3 |
∴数列{
| 1 |
| an |
| 1 |
| a1 |
| 3 |
| 2 |
| 2 |
| 3 |
∴
| 1 |
| an |
| 3 |
| 2 |
| 2 |
| 3 |
| 4n+5 |
| 6 |
∴an=
| 6 |
| 4n+5 |
故答案为
| 6 |
| 4n+5 |
点评:熟练掌握取“取倒数法”和等差数列的通项公式是解题的关键.
练习册系列答案
相关题目