题目内容

已知平面向量
OA
OB
OC
满足:|
OA
|=|
OB
|=|
OC
|=1,
OA
OB
=0
,若
OC
=x
OA
+y
OB
(x,y∈R),则x+y的最大值是
2
2
分析:由已知将
OC
=x
OA
+y
OB
两边平方后整理得x2+y2=1,进而根据基本不等式可得x+y的最大值
解答:解:∵|
OA
|=|
OB
|=|
OC
|=1,
OA
OB
=0

OC
=x
OA
+y
OB
两边平方得
OC
2
=x2
OA
2
+y2
OB
2
+2xy
OA
OB

所以 x2+y2=1,
由于 (x+y)2=x2+y2+2xy≤2(x2+y2)=2,
因此 x+y≤
2

即 x+y 最大值为
2

故答案为:
2
点评:本题考查的知识点是平面向量的基本定理,基本不等式,其中根据已知分析出x2+y2=1是解答的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网