题目内容
已知f(x)=2+log3x, x∈[1,9],求y=[f(x)]2+f(x 2)的最大值,及y取最大值时,x的值.
分析:要求函数y=[f(x)]2+f(x 2)的最大值,一是要求其表达式;二是要求出它的定义域,然后求值域.
解:∵
,?
∴![]()
=![]()
=![]()
=
.
∵函数f(x)的定义域为[1,9],
∴要使函数y=[f(x)]2+f(x 2)有意义,就需1≤x2≤9,1≤x≤9.?
∴1≤x≤3.∴0≤log3x≤1.
∴
.?
∴当x=3时,函数y=[f(x)]2+f(x 2)取最大值13.
练习册系列答案
相关题目