题目内容
| OA |
| OB |
| 2π |
| 3 |
| OA |
| OB |
| OA |
| OB |
| OC |
| 0 |
| OC |
分析:先求出A、B两个点的坐标,根据
+
+
=
,计算
的坐标.
| OA |
| OB |
| OC |
| 0 |
| OC |
解答:解:由题意可知:A(2,0),即向量
=(2,0);
B(-
,-
),则向量
=(-
,-
),
∵
+
+
=
,∴
=-(
+
)=(-
,
)
故答案为:(-
,
)
| OA |
B(-
| 1 |
| 2 |
| ||
| 2 |
| OB |
| 1 |
| 2 |
| ||
| 2 |
∵
| OA |
| OB |
| OC |
| 0 |
| OC |
| OA |
| OB |
| 3 |
| 2 |
| ||
| 2 |
故答案为:(-
| 3 |
| 2 |
| ||
| 2 |
点评:本题考查平面向量数量积的运算,向量和复平面内的点的对应关系,是基础题.
练习册系列答案
相关题目