题目内容

已知抛物线y=ax2+bx+c通过点(1,1),且在点(2,-1)处与直线y=x-3相切,求a、b、c的值.
∵f(1)=1,∴a+b+c=1.
又f′(x)=2ax+b,
∵f′(2)=1,∴4a+b=1.
又切点(2,-1),∴4a+2b+c=-1.
把①②③联立得方程组
a+b+c=1
4a+b=1
4a+2b+c=-1.
解得
a=3
b=-11
c=9

即a=3,b=-11,c=9.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网