题目内容
11.观察(x2)'=2x,(x4)'=4x3,(x6)'=6x5,(cosx)'=-sinx.由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )| A. | f(x) | B. | -f(x) | C. | g(x) | D. | -g(x) |
分析 由已知中(x2)'=2x,(x4)'=4x3,(cosx)'=-sinx,…分析其规律,我们可以归纳推断出,偶函数的导函数为奇函数,再结合函数奇偶性的性质,即可得到答案.
解答 解:由(x2)'=2x中,原函数为偶函数,导函数为奇函数;
(x4)'=4x3中,原函数为偶函数,导函数为奇函数;
(cosx)'=-sinx中,原函数为偶函数,导函数为奇函数;
…
我们可以推断,偶函数的导函数为奇函数.
若定义在R上的函数f(x)满足f(-x)=f(x),
则函数f(x)为偶函数,
又∵g(x)为f(x)的导函数,则g(x)奇函数
故g(-x)+g(x)=0,即g(-x)=-g(x),
故选:D
点评 本题考查的知识点是归纳推理,及函数奇偶性的性质,其中根据已知中原函数与导函数奇偶性的关系,得到结论是解答本题的关键.
练习册系列答案
相关题目
2.已知xy>0,若x2+4y2>(m2+3m)xy恒成立,则实数m的取值范围是( )
| A. | (-∞,-4]∪[-1,+∞) | B. | (-∞,-1]∪[4,+∞) | C. | (-4,1) | D. | (-1,4) |
19.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.
该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”的两数之和,表中最后一行仅是一个数,则这个数为( )
该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”的两数之和,表中最后一行仅是一个数,则这个数为( )
| A. | 2018×22016 | B. | 2018×22015 | C. | 2017×22016 | D. | 2017×22015 |
6.设函数f(x),若对于在定义域内存在实数x满足f(-x)=-f(x),则称函数f(x)为“局部奇函数”.若函数f(x)=4x-m•2x+m2-3是定义在R上的“局部奇函数”,则实数m的取值范围是( )
| A. | [1-$\sqrt{3}$,1+$\sqrt{3}$) | B. | [-1,2) | C. | [-2$\sqrt{2}$,2$\sqrt{2}$] | D. | [-2$\sqrt{2}$,1-$\sqrt{3}$] |
16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{4}=1$的一条渐近线为$y=\frac{1}{2}x$,则双曲线方程为( )
| A. | $\frac{x^2}{4}-\frac{y^2}{16}=1$ | B. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | C. | $\frac{y^2}{16}-\frac{x^2}{4}=1$ | D. | $\frac{y^2}{4}-\frac{x^2}{16}=1$ |
1.已知△ABC的内角A,B,C满足10sinA=12sinB=15sinC,则cosB=( )
| A. | $\frac{{\sqrt{15}}}{4}$ | B. | $\frac{9}{16}$ | C. | $\frac{{3\sqrt{15}}}{16}$ | D. | $\frac{5}{48}$ |