题目内容
18.已知直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}t}{2}+1}\\{y=-\frac{\sqrt{2}t}{2}}\end{array}$(t是参数),以坐标原点为极点,x轴的正半轴为极轴,且取相同的长度单位建立极坐标系,圆C的极坐标方程为ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$).(1)求直线l的普通方程与圆C的直角坐标方程;
(2)设圆C与直线l交于A、B两点,若P点的直角坐标为(1,0),求|PA|+|PB|的值.
分析 (1)将参数方程两式相加消去参数t得到直线l的普通方程,将极坐标方程展开两边同乘ρ,根据极坐标与直角坐标的对应关系得到直角坐标方程;
(2)将直线l的参数方程代入曲线C的直角坐标方程,利用根与系数的关系和参数的几何意义求出距离.
解答 解:(1)∵直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}t}{2}+1}\\{y=-\frac{\sqrt{2}t}{2}}\end{array}$(t是参数),∴x+y=1.
即直线l的普通方程为x+y-1=0.
∵ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$)=2cosθ-2sinθ,
∴ρ2=2ρcosθ-2ρsinθ,
∴圆C的直角坐标方程为x2+y2=2x-2y,即x2+y2-2x+2y=0.
(2)将$\left\{\begin{array}{l}{x=\frac{\sqrt{2}t}{2}+1}\\{y=-\frac{\sqrt{2}t}{2}}\end{array}$代入x2+y2-2x+2y=0得t2-$\sqrt{2}$t-1=0,
∴t1+t2=$\sqrt{2}$,t1t2=-1.
∴|PA|+|PB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{{t}_{1}}^{\;}{t}_{2}}$=$\sqrt{6}$.
点评 本题考查了参数方程,极坐标方程与普通方程的转化,参数的几何意义,属于基础题.
练习册系列答案
相关题目
10.
如图:已知,在△OAB中,点A是BC的中点,点D是将向量$\overrightarrow{OB}$分为2:1的一个分点,DC和OA交于点E,则三角形OEC与OBC的面积的比值是( )
| A. | $\frac{2}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{3}{8}$ |