题目内容
(2012•许昌县一模)若α是锐角,且cos(α+
)=-
,则sinα的值等于( )
| π |
| 3 |
| ||
| 3 |
分析:由于α=(α+
)-
,利用两角差的正弦即可求得sinα的值.
| π |
| 3 |
| π |
| 3 |
解答:解:∵α是锐角,
∴
<α+
<
,又cos(α+
)=-
,
∴sin(α+
)=
.
∴sinα=sin[(α+
)-
]
=sin(α+
)cos
-cos(α+
)sin
=
×
-(-
)×
=
.
故选A.
∴
| π |
| 3 |
| π |
| 3 |
| 5π |
| 6 |
| π |
| 3 |
| ||
| 3 |
∴sin(α+
| π |
| 3 |
| ||
| 3 |
∴sinα=sin[(α+
| π |
| 3 |
| π |
| 3 |
=sin(α+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=
| ||
| 3 |
| 1 |
| 2 |
| ||
| 3 |
| ||
| 2 |
=
| ||
| 6 |
故选A.
点评:本题考查两角和与差的正弦,求得sin(α+
)是基础,考查转化与运算能力,属于中档题.
| π |
| 3 |
练习册系列答案
相关题目