题目内容
数列1+
, 2+
, 3+
, … , n+
, …的前n项和是______.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 2n |
Sn=1+
+2+
+…+n+
=(1+2+…+n)+(
+
+…+
)
=
+
=
+1-(
)n
故答案为:
+1-(
)n
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n |
=(1+2+…+n)+(
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n |
=
| n(n+1) |
| 2 |
| ||||
1-
|
=
| n(1+n) |
| 2 |
| 1 |
| 2 |
故答案为:
| n(n+1) |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目
数列1+
,2+
,3+
,4+
,…的前n项的和为( )
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 16 |
A、
| ||||
B、-
| ||||
C、-
| ||||
D、-
|
数列1+
,2+
,3+
,4+
,…的前n项和为( )
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 16 |
A、2-
| ||||
B、2-
| ||||
C、
| ||||
D、
|