题目内容
在数列{an}中,a1=-| 1 |
| 3 |
(I)求b1,b2;
(II)证明数列{bn-1}是等比数列;
(III)设cn=
(
| ||
2
|
分析:(I)由bn=an+n+1及3an-2an-1+n+2=0把n=1,2分别代入可求
(II)由3an-2an-1+n+2=0得,3(an+n)=2(an-1+n-1),
=
,即
=
,从而可证
(III)由(I)可得bn=
bn-1+
从而可求bn=1+(
)n,则cn=
=
=
-
,从而可利用裂项求和.
(II)由3an-2an-1+n+2=0得,3(an+n)=2(an-1+n-1),
| an+n |
| an-1+n-1 |
| 2 |
| 3 |
| bn-1 |
| bn-1-1 |
| 2 |
| 3 |
(III)由(I)可得bn=
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
(
| ||
2
|
| bn-bn+1 |
| bnbn+1 |
| 1 |
| bn+1 |
| 1 |
| bn |
解答:解:(I)∵a1=-
,bn=an+n+1∴b1=a1+2=
当n=2时,3a2-2a1+4=0可得a2=-
∴b2=3+a2=
(II)由3an-2an-1+n+2=0得,3(an+n)=2(an-1+n-1)
=
,n≥2即
=
∵b1- 1=
≠0
∴{bn-1}是以
为首项,
为公比的等比数列
(III)由(I)可得bn=
bn-1+
∴2bn-1+1=3bn,所以bn=1+(
)n
cn=
=
=
=
-
Tn=C1+C2+…+Cn=
-
=
-
| 1 |
| 3 |
| 5 |
| 3 |
当n=2时,3a2-2a1+4=0可得a2=-
| 14 |
| 9 |
∴b2=3+a2=
| 13 |
| 9 |
(II)由3an-2an-1+n+2=0得,3(an+n)=2(an-1+n-1)
| an+n |
| an-1+n-1 |
| 2 |
| 3 |
| bn-1 |
| bn-1-1 |
| 2 |
| 3 |
∵b1- 1=
| 2 |
| 3 |
∴{bn-1}是以
| 2 |
| 3 |
| 2 |
| 3 |
(III)由(I)可得bn=
| 2 |
| 3 |
| 1 |
| 3 |
∴2bn-1+1=3bn,所以bn=1+(
| 2 |
| 3 |
cn=
(
| ||
2
|
(
| ||
| (2bn+1)bn |
| bn-bn+1 |
| bnbn+1 |
| 1 |
| bn+1 |
| 1 |
| bn |
Tn=C1+C2+…+Cn=
| 1 |
| bn+1 |
| 1 |
| b1 |
| 3n+1 |
| 2n+1+ 3n+1 |
| 3 |
| 5 |
点评:本题目主要考查了利用数列的递推公式求解数列的通项公式,而定义法是证明数列为等比(等差)数列的常见方法,裂项求和是数列求和的重要方法,要注意掌握.
练习册系列答案
相关题目